AchmadBagus Krishna N Blognya Anak Kembar
Sejak duduk dibangku SD, siswa sudah dikenalkan dengan operasi matematika salah satunya adalah pembagian. Dalam menjawab soal yang ada kaitannya dengan pembagian terkadang bisa saja menjadi bingung apakah bilangan tersebut habis terbagi atau tidak? Apa lagi jika bilangan yang akan dibagi adalah bilangan ribuan atau jutaan. Terkadang juga dalam menyelesaikan suatu permasalahan/soal dalam matematika, kita harus bisa mengenali hal-hal yang paling dasar. Bilangan bulat memang terlihat sangat simpel, tetapi jika kita telusuri lebih dalam lagi ada sesuatu yang menarik yang bisa kita pelajari. Suatu bilangan yang bisa habis dibagi oleh bilangan-bilangan yang lain, perlu kita samakan persepsi bahwa habis dibagi itu maksudnya adalah jika suatu bilangan dibagi oleh bilangan lain maka hasilnya tidak memberikan sisa atau sisanya adalah nol. Berikut pembahasan ciri-ciri bilangan yang habis dibagi 2, 3, 4, 5, 6, 7, 8, dan 9. A. Bilangan Habis di bagi 2 Bilangan ini mempunyai ciri bilangan yang satuannya genap 0, 2, 4, 6, dan 8. Contoh Apakah 68 habis dibagi 2? Habis. Karena 68 merupakan bilangan genap. Rumus bilangan genap adalah 2n untuk n sembarang bilangan bulat. Sedangkan bilangan ganjil adalah 2n-1 untuk sembarang n bilangan bulat. Sedangkan untuk bilangan 68 memenuhi rumus bilangan genap, maka 68 habis dibagi 2. 68 2 = 34. B. Bilangan Habis di bagi 3 Bilangan ini akan memiliki ciri jumlah digitnya habis dibagi 3. Contoh Apakah 213 habis dibagi 3? Habis. sebab bilangan 213 jika dijumlahkan ke tiga digitnya akan menjadi 2 + 1 + 3 = 6, sedangkan 6 adalah habis dibagi 3. C. Bilangan Habis di bagi 4 Bilangan ini mempunyai ciri dua digit terakhir habis dibagi 4. Contoh Apakah 324 habis dibagi 4? Habis. Sebab dua digit terakhir yaitu 24 habis dibagi 4. Sehingga 324 habi dibagi 4. Bagaimana dengan 2006 apakah habis dibagi 4? Tentu tidak, karena 06 tidak habis dibagi 4. D. Bilangan Habis di bagi 5 Bilangan ini mempunyai ciri yang satuannya 0 atau 5. Contoh Apakah habis dibagi 5? Habis, sebab angka satuannya adalah 5.ini sangat mudah sekali E. Bilangan Habis di bagi 6 Bilangan ini mempunyai ciri jika bilangan genap yang jumlah angka-angkanya habis dibagi 3. Atau bilangan yang habis dibagi 3 dan habis juga dibagi 2. Contoh Apakah 234 habis dibagi 6? Sekarang kita perhatikan jumlah angka-angkanya 2 + 3 + 4 = 9, dan 9 habis dibagi 3. Karena habis dibagi 3. Karena jumlah angka-angkanya habis dibagi 3 dan bilangan itu genap, maka 234 habis dibagi 6. F. Bilangan Habis di bagi 7 Bilangan ini bila dibagian satuan dikalikan 2 dan menjadi pengurangan dari bilangan yang tersisa yang jika hasilnya habis dibagi 7 maka bilangan itu adalah habis dibagi 7. Contoh Apakah habis dibagi 7? Kita pisahkan 6 satuannya, kemudian 523 - 6x2 = 511. Apakah 511 habis dibagi 7? 51 - 1 x 2 = 49. Karena 49 habis dibagi 7, maka habis dibagi 7. G. Bilangan Habis di bagi 8 Bilangan ini bila bilangan tiga digit terakhir habis dibagi 8. Contoh Apakah habis dibagi 8? Tiga digit terakhir yaitu 125, dan 125 habis dibagi 8. Sehingga habis dibai 8. Bagaimana dengan 56? Tidak jadi masalah karena 56 = 056, sehingga tiga digit terakhirnya 056 , dan 56 habis dibagi 8. Sehingga 56 habis dibagi 8. H. Bilangan Habis di bagi 9 Bilangan ini mempunyai ciri jumlah digit-digit angkanya habis dibagi 9. Contoh Apakah 819 habis dibagi 9? Coba hitung jumlah digit-digitnya yaitu 8 + 1 + 9 = 18. Dan 18 ternyata habis dibagi 9, sehingga bilangan 819 adalah habis dibagi 9. Baca juga Permainan Matematika KPK dan FPB Konsep Hitung Pembagian Pecahan Demikianlah ciri-ciri bilangan yang habis dibagi 2, 3, 4, 5, 6, 7, 8, dan 9. "Semoga Bermanfaat Bagi Pembaca"
4bukan bilangan prima karena dapat dibagi 2 6 bukan bilangan prima karena dapat dibagi 3 8 bukan bilangan prima karena dapat dibagi 4 9 bukan bilangan prima karena dapat dibagi 3 adalah bilangan prima kurang dari 20 yaitu (2,3,5,7,11,13,17,19) B = {2,3,5,7,11,13,17,19}maka n(B)/jumlah B adalah 8 Daftar Pustaka: Adinawan, M. Cholik
Ingat kembali -suku ke-n deret aritmatika -rumus jumlah suku pertama Pertama kita tentukan semua jumlah bilangan antara 1 sampai 50, maka Maka diperoleh Selanjutnya kita tentukan jumlah bilangan yang anatar 1 sampai 50 yang habis dibagi 3, dengan bilangan terkecil adalah 3 dan bilangan terbesar adalah 48. Sehingga diperoleh Kita tentukan banyaknya suku pada barisan tersebut Sehingga diperoleh Sehingga diperoleh jumlah semua bilangan bulat di antara 1 sampai 50 yang tidak habis dibagi tiga Dengan demikian,jumlah semua bilangan bulat di antara 1 sampai 50 yang tidak habis dibagi tigaadalah 816 Oleh karena itu, jawaban yang benar adalah B.
ProgramPython Contoh Perulangan Bilangan Genap 2 4 6 8 10. Bilangan genap adalah bilangan yang habis dibagi dengan 2, atau biasa disebut sisa baginya adalah 0. Jadi pada program python kali ini ialah program untuk menampilkan bilangan genap dari 2,4,6,8,10. Pada artikel lainnya sudah ada dalam program c++.
Waktu kita membagi kadang bingung, dengan angka yang banyak, bisa dibagi atau tidak ya. Sebenarnya ada cara yang mudah untuk mengetahuinya dan ga perlu menghitung dan mikir terlalu lama. Mau tahu, baca sampai selesai. BILANGAN HABIS DIBAGI 2 Suatu bilangan habis dibagi 2, ciri-cirinya adalah bilangan yang berakhiran berangka satuan 0, 2, 4, 6, 8. Dengan kata lain bilangan itu adalah bilangan genap. Contoh apakah 74 habis dibagi 2? Karena 74 merupakan bilangan genap Ingat rumus untuk bilangan genap. Rumus untuk bilangan genap adalah 2k untuk sebarang k bilangan bulat. Sedangkan untuk bilangan ganjil yaitu 2k-1 untuk sebarang k bilangan bulat. Karena 74 memenuhi rumus bilangan genap, maka 74 habis dibagi 2. BILANGAN HABIS DIBAGI 3 Suatu bilangan habis dibagi 3 apabila jumlah digit-digitnya habis dibagi 3. Contoh Apakah 213 habis dibagi 3? Karena 2 + 1 + 3 = 6 habis dibagi 3. Maka bilangan itu 213 habis dibagi 3. BILANGAN HABIS DIBAGI 4 Suatu bilangan dapat dibagi 4 apabila dua digit terakhir habis dibagi 4. Contoh Apakah 324 habis dibagi 4? Dua digit terakhir yaitu 24. Dan 24 habis dibagi 4. Sehingga 326 habis dibagi 4. Apakah 2006 habis dibagi 4? Tidak. Karena dua angka terahirnya yaitu 06. Sedangkan 06 tidak habis dibagi 4. Sehingga 2006 tidak habis dibagi 4. BILANGAN HABIS DIBAGI 5 Apabila bilangan tersebut berakhiran 0 atau 5 maka habis dibagi 5. Contoh Apakah 3255 habis dibagi 5? Digit terakhir adalah 5. Sehingga 3255 habis dibagi 5. BILANGAN HABIS DI BAGI 6 Ciri Bilangan yang habis dibagi 6 adalah bilangan yang habis dibagi 3 dan habis dibagi 2. Contoh apakah 234 habis dibagi 6? Karena 2 + 3 + 4 = 9 habis dibagi 3 dan bilangan itu genap. Maka 234 habis dibagi 6. BILANGAN HABIS DI BAGI 7 Bila satuannya dikalikan 2, dan menjadi pengurang dari yang tersisa dimana hasilnya habis dibagi 7, maka bilangan itu habis dibagi 7. Contoh apakah 5236 habis dibagi 7? Kita pisahkan 6 satuannya, kemudian 523 β 6 Γ 2 = 511. Apakah 511 habis dibagi 7? 51 β 1 x 2 = 49. Karena 49 habis dibagi 7 maka 5236 habis dibagi 7. BILANGAN HABIS DI BAGI 8 Apabila tiga digit terakhir habis dibagi 8. Contoh apakah 3125 habis dibagi 8? Tiga digit terakhir yaitu 125 habis dibagi 8. Sehingga 3125 habis dibagi 8. BILANGAN HABIS DI BAGI 9 Apabila jumlah angka-angkanya habis dibagi 9 maka bilangan tersebut habis dibagi 9. Contoh apakah 819 habis dibagi 9? Jumlah digit-digitnya yaitu 8 + 1 + 9 = 18 habis dibagi 9 sehingga 819 habis dibagi 9. BILANGAN HABIS DI BAGI 10 Jika angka satuannya adalah 0 maka bilangan tersebut habis dibagi 10. Contoh apakah 8190 habis dibagi 10? Angka satuan=0, maka 8190 habis dibagi 10. BILANGAN YANG HABIS DI BAGI 11 Bilangan habis dibagi 11 yaitu jika bilangan tersebut merupakan kelipatan 11. Ciri bilangan habis dibagi 11 yaitu jika jumlah digitnya yang berganti tanda habis dibagi 11. Contohnya Apakah 1234 habis dibagi 11? Maka yang kita lakukan adalah sebagai berikut. Karena 4 β 3 + 2 β 1 = 2 tidak habis dibagi 11, maka 1234 juga tidak habis dibagi 11. Apakah 803 habis dibagi 11? Karena 3 β 0 + 8 = 11 habis dibagi 11 maka 803 habis dibagi 11. BILANGAN YANG HABIS DIBAGI 13 Ciri bilangan habis dibagi 13 adalah bilangan asal dipisahkan satuannya kemudian dikalikan 9 multiplier dari 13. Dan bilangan yang setelah dipisahkan tadi dikurangi dengan 9 kali bilangan satuannya. Misalnya bilangan awal kita adalah abcdefg, maka ciri bilangan habis dibagi 13 adalah abcdef β 9g. Jika hasilnya habis dibagi 13, maka bilangan semula juga habis dibagi 13. Contoh Apakah 3419 habis dibagi 13? 341 β 99 = 341 β 81 = 260. Karena 260 habis dibagi 13, maka 3419 habis dibagi 13. Kita coba angka yangg lebih besar. Misal Apakah 12818 habis dibagi 13? 1281 β 98 = 1281 β 72 = 1209 120 β 99 = 120 β 81 = 39. 39 habis dibagi 13, maka 12818 habis dibagi 13. BILANGAN HABIS DI BAGI 15 Apabila angka satuannya adalah 0 atau 5 maka bisa dibagi 5. Jumlah angkanya habis dibagi 3. Contoh apakah 8190 habis dibagi 15? Angka satuan=0, Jumlah angkanya= 8+1+9+0=18 habis dibagi 3, maka 8190 habis dibagi 15. BILANGAN YANG HABIS DIBAGI 17 Ciri bilangan habis dibagi 17 adalah jika bilangan tersebut dipisahkan antara satuannya dan sisa angkanya, dimana jika sisa angkanya dikurangi dengan 5 kali satuannya habis dibagi 17. Contohnya apakah 153 habis dibagi 17? Langkah pertama yaitu memisahkan bilangan tersebut dengan satuannya. 153 menjadi 15 dan 3. Kemudian kita lakukan langkah pada syarat tersebut. 15 β 35 = 0. Karena 0 habis dibagi 17, maka 153 juga habis dibagi 17. Contoh lain yang lebih panjang yaitu apakah 5338 habis dibagi 17? Kita lakukan langkah-langkah yang telah diberikan sebelumnya. 533 β 85 = 493 49 β 35 = 34 Karena 34 habis dibagi 17, maka 5338 habis dibagi 17. BILANGAN HABIS DIBAGI 19 Ciri bilangan habis dibagi 19 yaitu jika satuannya dikalikan dua dan ditambahkan pada angka sisa angka semula yang dibuang satuannya habis dibagi 19. Contoh Apakah 209 habis dibagi 19? Secara perhitungan biasa, 209 habis dibagi 19. Karena 19 x 11 adalah 209. Sekarang bagaimana jika kita menggunakan ciri bilangan habis dibagi 19 menggunakan cara yang telah disebutkan di atas. Kita perhatikan angka 209. Angka tersebut satuannya kita pisah. Diperoleh angka-angka baru yaitu 20 dan 9. Kemudian langkah selanjutnya yaitu angka satuan kita kalikan dua dan kita jumlahkan dengan angka yang lain yang telah dipisah tadi. Diperoleh, 20 + 92 = 28. Karena 38 habis dibagi 19, maka bilangan asal tadi juga habis dibagi 19. Sehingga, 209 habis dibagi 19. Kita lanjutkan untuk contoh dengan angka yang lebih besar. Apakah 9937 habis dibagi 19? Kita lakukan langkah-langkah yang telah diberikan tadi. 933 + 72 = 1007. Tentunya sekarang kita dapatkan angka yang lebih kecil. Untuk mengecek apakah 1007 habis dibagi 19, maka kita lakukan langkah yang sama. Dengan cara yang sama, 100 + 72 = 144. Kita lanjutkan dengan mengecek apakah 114 habis dibagi 19. Kita peroleh, 11 + 42 = 19. Karena 19 habis dibagi 19, maka 114 habis dibagi 19. Dan diperoleh 1007 habis dibagi 19. Dan akhirnya 9937 juga habis dibagi 19.
Tentukanjumlah semua bilangan yang habis dibagi 2 dan 5 antara 50 sampai 100Jawaban : Pembahasan : Tentukan semua jumlah bilangan asli antara 1 dan 200 yang habis dibagi 3 dan 5. Jawaban : Suke ke-5 suatu deret aritmatika sama dengan 40 dan suku ke-8 deret itu sama dengan 25. a) Tentukan suku pertama dan beda deret aritmatika
Pengguna Brainly Pengguna Brainly Bab Bilangan GenapMatematika SD Kelas VIBilangan genap adalah bilangan yang habis dibagi 2Bilangan genap yang habis dibagi 4 adalah kelipatan 4Bilangan genap antara 1 dan 40 yang habis dibagi 4 = { 4, 8, 12, 16, 20, 24, 28, 32, 36 }
YZwmgo.